
Design and Evaluation of Storage Organizations for
Read-Optimized Main Memory Databases

Craig Chasseur
University Of Wisconsin

chasseur@cs.wisc.edu

Jignesh M. Patel
University Of Wisconsin

jignesh@cs.wisc.edu

ABSTRACT
Existing main memory data processing systems employ a va-
riety of storage organizations and make a number of storage-
related design choices. The focus of this paper is on sys-
tematically evaluating a number of these key storage design
choices for main memory analytical (i.e. read-optimized)
database settings. Our evaluation produces a number of
key insights: First, it is always beneficial to organize data
into self-contained memory blocks rather than large files.
Second, both column-stores and row-stores display perfor-
mance advantages for different types of queries, and for high
performance both should be implemented as options for the
tuple-storage layout. Third, cache-sensitive B+-tree indices
can play a major role in accelerating query performance,
especially when used in a block-oriented organization. Fi-
nally, compression can also play a role in accelerating query
performance depending on data distribution and query se-
lectivity.
Source Code: At https://www.cs.wisc.edu/quickstep

1. INTRODUCTION
Dropping DRAM prices and increasing memory densities

have now made it possible to economically build high per-
formance analytics systems that keep their data in main
memory all (or nearly all) the time. There is now a surge
of interest in main memory database management systems
(DBMSs), with various research and commercial projects
that target this setting [7, 8, 11,13,17,22,25,33,35].
In this paper, we present results from an experimental sur-

vey/evaluation of various storage organization techniques for
a main memory analytical data processing engine, i.e. we fo-
cus on a read-optimized database setting. We note that the
focus of this paper is on experimental evaluation of a number
of existing storage organization techniques that have been
used in a variety of DBMS settings (many in traditional disk-
based settings), but the central contribution of this paper is
to investigate these techniques for main memory analytic
data processing. To the best of our knowledge such a study
has not been conducted. In addition this paper also makes

available an experimental platform for the community to use
to design and evaluate other storage organization techniques
for read-optimized main memory databases.

Designers of read-optimized main memory database stor-
age engines have to make a number of design decisions for
the data storage organization. Some systems use column-
stores for the data representation (e.g. [11]), whereas others
use row-stores (e.g. [25]). The use of indexing is not gener-
ally well understood or characterized in this setting. Other
questions such as to whether it is advantageous to store the
data for a given relation in large (main memory) “files” or
segments, or to break up the data into traditional pages (as
is done for disk-based systems), or to choose some intermedi-
ate data-partitioning design, are also not well characterized.
In this paper we use an experimental approach to consider
and evaluate various storage-related design tradeoffs.

Our approach for this research is to build a prototype
main memory storage engine with a flexible architecture,
which then allows us to study the cross section of storage or-
ganization designs that is produced by examining the follow-
ing dimensions: a) large memory “files” vs. self-contained
memory blocks, b) row-store vs. column-store, c) indexing
vs. no indexing, d) compression vs. no compression. We
have conducted a comprehensive study of the storage design
space along these axes and arrived at a number of interest-
ing findings. For example, we find that a novel block-based
storage organization outperforms file-based organization at
both query time and load time, and that cache-sensitive
index structures have a major role to play in accelerating
query performance in this main memory setting.

Overall, the key contributions of this paper are as fol-
lows: First, this paper systematically characterizes the de-
sign space for main memory database physical storage orga-
nizations using the four dimensions listed above.

Second, we present a flexible storage manager design that
facilitates comparing the different storage organization choices.
This storage manager has an interesting block-based design
that allows for a very flexible internal organization. This
framework allows direct comparison of a number of storage
alternatives, and we hope it serves as a platform for other
researchers to improve on our methods and perhaps design
and evaluate other storage organization techniques.

Third, we conduct a rigorous, comprehensive experimen-
tal evaluation to characterize the performance of selection-
based analytic queries across the design space, providing a
complete view of the various storage organization alterna-
tives for main-memory data processing engines. Our study
reveals several interesting experimental findings, including

1

that both row-stores and column-stores have performance
sweet spots in this setting, and can coexist in our storage
manager design. We also find that indexing and compres-
sion continue to play an important role for main memory
storage, and are often required for high performance.
Finally, this paper allows designers of main memory stor-

age engines to make informed decisions about tradeoffs asso-
ciated with different storage organizations, such as figuring
out what they leave on the table if they use a pure column-
store vs. supporting both row-stores and column-stores.
We note that to keep this work focused on the core stor-

age management aspect (as opposed to query evaluation al-
gorithms, query optimization, etc.), our evaluation largely
covers single relational access plans, which form the building
blocks for more complex query evaluation methods. Further-
more, previous work on main memory analytical databases
has emphasized the importance of these simple scan-based
access methods [5, 11, 31]. This approach allows us to focus
on key storage organization issues. We recognize that more
complex query processing mechanisms can interact with the
storage engine in interesting ways, but they still need fast
support for basic selection operations, and currently there
isn’t a clear consensus on how to best build a main mem-
ory query processing engine; for example, even single join
methods are being rethought in this setting [3, 4, 6, 18].
The remainder of this paper is organized as follows: In

Section 2, we describe the Quickstep Storage Manager, our
platform for read-optimized main memory storage experi-
ments. In Section 3, we describe the experimental setup
that is used in this paper, and Section 4 presents the exper-
imental results. Related work is discussed in Section 5, and
Section 6 contains our concluding remarks.

2. QUICKSTEP STORAGE MANAGER
Quickstep is a new SQL-based main memory relational

database management system (DBMS) that we are currently
developing. Quickstep aims to deliver high database perfor-
mance on modern and future hardware by exploiting large
main memories, fast on-die CPU caches, and highly parallel
multi-core CPUs. The Quickstep Storage Manager (SM) is
used as the experimental platform in this paper to systemati-
cally evaluate storage organizations for read-optimized main
memory DBMSs. This Storage Manager has a flexible archi-
tecture that naturally allows direct comparisons of various
storage organization choices within the same framework.

2.1 The Quickstep SM Architecture
The basic unit of organization in the Quickstep SM is a

storage block. A table is typically stored across many blocks,
though each block belongs to one and only one table.
From the perspective of the rest of the system, blocks are

opaque units of storage that support a select operation. A
select operation is specified as a projection list, a predicate,
and a destination. The destination is some (temporary)
block(s) where the results should be materialized. Blocks
are independent and self-contained, and each one can de-
cide for itself, based on its own internal organization, how
to most efficiently evaluate the predicate and perform the
selection. Blocks support update and delete operations that
are also described logically and performed entirely within
the storage system.
Like System R [29], the Quickstep SM allows pushing

down single-table predicates to the SM, but Quickstep goes

beyond System R in that Quickstep’s expression and pred-
icate framework allows any arbitrary predicate to be eval-
uated entirely inside the storage system, so long as it only
references attributes of a single table (i.e. we are not limited
to a narrow definition of “sargable” predicates). Like Mon-
etDB [7] and Vectorwise [35], the Quickstep SM does away
with the traditional tuple-at-a-time cursor interface, and
materializes the complete result of a selection-projection op-
eration on a block all at once into other in-memory block(s).

The Quickstep SM organizes the main memory into a large
pool of memory “slots” that are occupied by storage blocks.
A given table’s tuples are stored in a number of blocks, and
blocks may be different sizes (modulo the size of a slot),
and have different physical layouts internally. The storage
manager is responsible for creating and deleting blocks, and
staging blocks to persistent storage (SSD, disk, etc.).

Internally, a storage block consists of a single tuple-storage
sub-block and any number of index sub-blocks. The index
sub-blocks contain index-related data for tuples in that block
are are self-contained in the storage block. The index sub-
blocks can be viewed as partitioned indices [12].

The block-oriented design of Quickstep’s storage system
offers a tremendous amount of flexibility with regards to
physical database organization. Many different tuple-storage
sub-block and index sub-block implementations are possi-
ble and can be combined freely (we describe the particular
sub-block types we studied in detail in Section 3.3). Not
only is it possible for different tables to have different phys-
ical layouts, it is possible for different blocks within a table
to have different layouts. For instance, the bulk of a ta-
ble could be stored in a sorted column-store format which
is highly amenable to large-scale analytic queries, while a
small “hot” group of indexed row-store blocks can support
a live transactional workload.

Storage blocks are a natural unit of parallelism for mul-
tithreaded query execution, and temporary blocks are units
of data flow between operators in complex queries.

3. EXPERIMENTS
As discussed in the Introduction, the focus of this study

is on core storage manager performance for read-optimized
main memory settings in which selection-based queries are
common. For the workload we build on the work of [16] that
had a similar goal, but in a disk-based setting. Specifically,
we use the tables and queries that are described below.

3.1 Tables
We use the following set of four tables:
• Narrow-U: This table has ten 32-bit integer columns

and 750 million rows. The values for each column are
randomly generated in the range [1 to 100,000,000].

• Narrow-E: This table has ten 32-bit integer columns
and 750 million rows. The values for column i are
randomly generated in the range from [1 to 22.7∗i].

• Wide-E: A table similar to Narrow-E, except that it
has 50 columns instead of 10 and 150 million rows in-
stead of 750 million. Thus, the total size of the gener-
ated data is the same. The values for column i are ran-
domly generated in the range from [1 to 24+(23/50)∗i].

• Strings: This table has ten 20-byte string columns
and 150 million rows. Each string is a random se-
quence of mixed-case letters, digits, spaces, and peri-
ods.

2

As in [16], we primarily study integer columns, which are
common and generalize nicely. We also consider a table
composed entirely of strings, as their storage requires more
space, and they are a commonly encountered data type.

3.2 Queries
Our workload primarily consists of queries of the form:
SELECT COL A,COL B,... FROM TBL WHERE COL A >= X;

The projected columns COL A ... are randomly chosen
for each experiment. Each query has a predicate on a single
column COL A. The literal value X is chosen based on the
range of values for COL A to achieve a desired selectivity.
In our experiments, we consider predicates with selectivity
0.1%, 1%, 10%, 50%, and 100%.
We also vary the number of columns that are projected.

For the Narrow-U, Narrow-E, and Strings tables, which each
have ten columns, we conduct experiments projecting 1, 3, 5,
and 10 columns. For Wide-E, which contains 50 columns, we
conduct experiments projecting 1, 15, 25, and 50 columns.
For each query, a random subset of the desired number of
columns is chosen to project. For each table, we also run ex-
periments that only measure the time to evaluate a predicate
without projecting any values or materializing any output
(we report this as a projection of zero attributes).
With the exception of zero-projection queries (which pro-

duce no output), we materialize the output of each query
in-memory in a simple non-indexed row-store format.
We also conduct experiments with more complex predi-

cates to determine whether our observations for simple pred-
icates hold. As in the previous study [16], the complex predi-
cates which we study are conjunctions of three single-column
predicates ANDed together. We again vary the selectivity
and number of columns projected.
Finally, we conduct experiments with an aggregate query

to gain some insight into how the storage organizations which
we study affect the performance of higher-level query-processing
operations. The query we experiment with is directly based
on the aggregate queries Q21 and Q24 (MIN with 100 par-
titions) from the Wisconsin Benchmark [10], and has the
following form:
SELECT ONEPERCENT, MIN(COL A) FROM TBL GROUP BY

ONEPERCENT HAVING MIN(COL A) < X;

We slightly modified the schema of the Narrow-U table
for the aggregate experiment, replacing one of the standard
columns with a ONEPERCENT column which has 100 unique
values and is used as the group-by attribute.
As in previous work [1, 15, 16], the performance metric

that we use for evaluation is single query response time,
which has a large impact on overall system performance.
Individual query response time is also an important metric
in interactive analysis environments.

3.3 Physical Database Organization
In this paper, we explore a number of key dimensions

related to physical organizations for read-optimized main
memory DBMSs. These dimension are described below.

3.3.1 Files vs. Blocks
In traditional DBMSs, tuples are stored in large files which

are subdivided into pages (disk or memory pages). Pages are
the units of buffer management and disk I/O. Non-clustered
indices are separate files, external to the base table files
which they reference. Modern column-store DBMSs store

projections of distinct columns as separate column-striped
files, which nonetheless fit into the large-file paradigm [19,
32]. Even where modern main memory DBMSs have aban-
doned page-based buffer management and I/O, they typi-
cally still organize data into large file-like memory segments.

As described in Section 2.1, Quickstep’s SM is built around
the concept of “blocks” as self-contained, self-describing units
of storage. A single table’s tuples are horizontally parti-
tioned across many blocks. Internally, blocks have a tuple-
storage sub-block which stores complete tuples, and any
number of index sub-blocks that index the tuples in the
tuple-storage sub-block. Multiple implementations of both
types of sub-block, with different physical layouts, are pos-
sible. The choice of sub-blocks is represented by additional
dimensions in our experiments below.

The first major dimension of our experiments is a com-
parison between a traditional large-file layout and a block-
oriented layout where tuples are divided amongst blocks and
indices, if any, are co-located with data inside blocks.

Block Size & Parallelism An important consideration
for the block-oriented layout is the size of blocks (Quick-
step allows differently-sized blocks). We conduct a sub-
experiment where we vary the size of blocks by powers of
2 from 128 KB to 256 MB and measure the response times
of queries of the form described in Section 3.2 on the Narrow-
U table. We also vary the number of worker threads used
to process queries in this experiment, using 1, 2, 5, or 10
threads pinned to individual CPU cores, and 20 threads
with one thread pinned to each hardware thread of a 10-
core hyperthreading-enabled CPU. We report the results of
this experiment in detail in Section 4.1. In summary, we
found that a block size of 16 MB with 20 hyperthreading-
enabled worker threads resulted in good performance across
the mix of queries and other physical organization parame-
ters that we tested, so we fix the number of worker threads
at 20 and the block size at 16 MB for our other experiments.

Partitioning The block-oriented design also allows us to
consider partitioning tuples into different groups of blocks
within a table depending on the value of some column(s).
A number of strategies for assigning tuples to partitions is
possible, analogous to the choices for horizontal partitioning
in a clustered parallel database system, e.g. [21,27]. For our
queries, which involve a range-based predicate on a single
column, we experiment with range-based partitioning based
on the value of a single column. We use 16 partitions evenly
divided by value range in these experiments1. For all but
the 100% selectivity queries, this has the effect of assigning
all relevant tuples for a predicate on the partition-column
to a limited subset of blocks.

3.3.2 Row-Stores vs. Column-Stores
The relative benefits of row-store and column-store orga-

nization for read-optimized databases in disk-based settings
have been extensively studied [1, 15, 16]. In this paper, we
consider the impact in main memory settings. We evaluate
both a conventional unsorted row-store and a column-store
sorted on a single primary column in our experiments. Both
layouts are evaluated in a large-file and block-oriented con-
text, with and without secondary indices.

1The choice of 16 partitions is somewhat arbitrary, and is meant
to illustrate the potential benefits of partitioning. A full study of
partitioning strategies (including handling of skew) is beyond the
scope of this paper.

3

3.3.3 Secondary Indices
Secondary indices can often speed evaluation of predicates

when compared to scans of a base table. We have imple-
mented a cache-sensitive B+-tree [26] index in the Quick-
step SM with a node size of 64 bytes (equal to the cache-
line size of our test system). We measure the response time
of our test queries when evaluating predicates via a CSB+-
tree on the appropriate column’s values for both row-store
and column-store layouts, with both the large-file and block-
oriented designs. We compare this to predicate evaluation
using scans and a binary search of the sorted column for the
column-store organization.

3.3.4 Compression
Compression is often effective in disk-based read-optimized

database settings [16]. An important consideration for main
memory read-optimized databases is whether the advan-
tages of compression still apply for data that is entirely
memory-resident. We implemented dictionary-coding and
bit-packing2 in the Quickstep storage manager. Compres-
sion is available for both row-stores and column-stores, and
if a CSB+-Tree index is built on a compressed column, it
will also store compressed codes. All queries that we con-
sider in our experiments can work directly on compressed
codes. Our compression implementation builds up sorted
dictionaries for each column as a block is being built and,
if space can be saved by compressing that column, stores
compressed codes (which still compare in the same order) in-
stead of native values. Dictionaries for compressed columns
are stored inside blocks. For integer columns whose values
are in a limited range, we can use bit-packing without a com-
pression dictionary by simply truncating these values down
to their lower-order bits.
We measure the difference in performance by using com-

pression in block-oriented organization on the Narrow-E ta-
ble, which contains several compressible columns. We com-
bine compression with both row-store and column-store lay-
outs, with and without indexing.

3.4 Experimental Setup
We run our experiments on a four-processor Intel Xeon

E7-4850 server with 256 GB of SDRAM in a NUMA config-
uration running Scientific Linux 6. Each processor has 10
cores and is clocked at 2.0 GHz. Each core has dedicated 32
KB L1 instruction and data caches and a dedicated 256 KB
L2 cache, while each processor has a shared 24 MB L3 cache.
The cache-line size is 64 bytes. Because our experiments are
focused on the performance impact of data organization, we
run most experiments on a single CPU socket (with up to
20 threads) using locally attached memory (64 GB). We do,
however, conduct some scale-up experiments that use all
four CPU sockets.
We created a test-driver executable which generates a ta-

ble from Section 3.1 in memory with a specified storage
organization, and then proceeds to run a series of exper-
iments, varying query selectivity and projection width as
described in Section 3.2. For each combination of physical
organization, table, and query parameters, 10 query runs
are performed and the total response time for each is mea-
sured. The mean and standard deviation of the execution

2Our bit-packing implementation pads individual codes to 1, 2, or
4 bytes, as we found that the cost to reconstruct codes that span
across more than one word significantly diminished performance.

times are reported. The total number of L2 and L3 cache
misses incurred during each query run are also measured
using hardware performance counters on the CPU. Quick-
step is compiled with GCC 4.8.0 using -march=native and
optimization level -O3.

In our initial block-size experiments, we found that us-
ing 20 worker threads with hyperthreading enabled tended
to produce the best performance, so we run all subsequent
queries using 20 worker threads. Queries are run one-at-a-
time, with individual worker threads operating on different
blocks for intra-query parallelism. Since the focus of this pa-
per is on read-optimized databases we have not enabled any
sophisticated transactional concurrency control or recovery
mechanisms (queries simply grab table-level locks).

4. RESULTS
Most of the results reported in this section are based on

queries on the Narrow-U table. We discuss how our findings
are affected by the presence of wide attributes (as in the
Strings table) in Section 4.8, and wide rows (as in the Wide-
E table) in Section 4.9.

From Figure 2 onward, we show a series of graphs that
compare the performance of various options in the large
space of storage organizations that we studied. All graphs
show total query response time on the vertical axis (lower is
always better) and vary either the selectivity or the projec-
tion width of test queries on the horizontal axis. Error bars
show the variation in query response time across 10 experi-
ment runs. To make these graphs easier to read, each graph
is accompanied by a table that identifies what region of the
design space is being shown (the organization, tuple layout,
and indexing), with the dimension that is being examined
shown in bold text. The selectivity and projection width
of queries are also indicated (for any given graph, one will
be fixed and the other varied along the horizontal axis).

4.1 Block Size & Threading Experiment
We conducted an experiment to determine how we should

tune the size of blocks in the block-oriented layout, and the
number of worker threads used for intra-query parallel pro-
cessing. For this experiment, we run the entire set of queries
described in Section 3.2 on a smaller version of the Narrow-
U table consisting of 100 million tuples. We vary the size of
blocks by powers of two from 128 KB to 256 MB, and the
number of threads from 1 to 20 (in the 1-10 thread cases,
the threads are pinned to individual CPU cores, while with
20 threads, the threads are pinned to individual hardware
threads with 2 threads per hyperthreading-enabled core).
In the interest of space, we present three queries below that
represent the key behavior that was observed across the en-
tire set of queries that we ran.

In Figure 1(a) we show a query with a 0.1% selectivity
predicate on a column store’s sort column. Here we observe
that optimal block sizes are in the range of 16-32 MB, and
that adding threads for intra-query parallelism results in
substantial speedup. We also observe that hyperthreading
is useful in speeding up query execution. This is because
predicate evaluation in this layout involves a binary search
of the sorted column, a random-access pattern of memory
accesses which is not well-handled by prefetching. When
one thread incurs a cache miss, it is often possible for the
other thread on the same core to immediately take over and
do some work, effectively “hiding” the cost of many cache

4

0.125
0.25 0.5 1 2 4 8 16 32 64 128 256

Block Size (MB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
e
sp

o
n
se

 T
im

e
 (
s)

Threads

1

2

5

10

20 (HT)

(a) 0.1% selectivity, 3 attributes projected,
predicate on sort column of Column Store.

0.5 1 2 4 8 16 32 64 128 256
Block Size (MB)

0

1

2

3

4

5

6

R
e
sp

o
n
se

 T
im

e
 (
s)

Threads

1

2

5

10

20 (HT)

(b) 10% selectivity, 3 attributes projected,
Row Store with CSB+-Tree index.

0.125
0.25 0.5 1 2 4 8 16 32 64 128 256

Block Size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
sp

o
n
se

 T
im

e
 (
s)

Threads

1

2

5

10

20 (HT)

(c) 1% selectivity, 3 attributes
projected, Row Store (scan).

Figure 1: Block size vs. response time.

misses. In the example shown, at 16 MB block size, enabling
hyperthreading reduces response time by 17.3% over the 10
thread case, even though the average total number of L3
cache misses is similar (35790 without hyperthreading and
37202 with hyperthreading). The 16-32 MB range of block
sizes is well-tuned to allow individual worker threads to often
hit cache lines that had already been faulted or prefetched
as part of previous “random” accesses.
Next, in Figure 1(b), we show the result for a 10% selec-

tivity query using a row store with a CSB+-Tree index. Sim-
ilar to the column store case above, the optimal block size is
approximately 16-32 MB. Again, adding threads for intra-
query parallelism improves the query performance. Hyper-
threading again improves performance because it is able to
“hide” the cost of cache misses arising from random ac-
cess (using a non-clustered index produces a sequence of
matching tuples in an order other than their physical order
in the base row-store, so tuples are accessed in a random
order when the projection is performed). In the example
shown, at 16 MB, hyperthreading reduces overall response
time by 23.1%, even though the number of L3 cache misses
incurred is actually slightly greater (18.4 million without
hyperthreading and 19.0 million with hyperthreading). We
see similar results when using a CSB+-Tree to evaluate a
predicate on a non-sorted column of a column store.

Observation 1. A block size of 16-32 MB with hyperthread-
ing enabled and all hardware threads in use provides opti-
mal or near-optimal performance for combinations of stor-
age formats and queries that involve random access.

The last query for this experiment is a simple scan query.
This result is shown in Figure 1(c). Scan-based queries
have a linear access pattern which works well with cache
prefetching. Hence, we find little variation in response time
for block sizes below 64 MB (most cache misses are avoided
by prefetching), and cache misses are infrequent enough that
hyperthreading does not significantly improve performance.
The results are similar when scanning a column store.

Observation 2. Scan-based queries are less sensitive to
block size and perform well for all block sizes below 64 MB.
Hyperthreading is not beneficial (but also not harmful) for
scan-based queries, and query performance increases with
additional threads up to the number of physical CPU cores.

Based on these observations, we fix the block size at 16
MB and the number of worker threads at 20 for the rest of
our experiments.

4.1.1 Relationship to Cache Size & Number of Cores
Optimal block size is related both to the CPU’s cache

size and its number of cores (since multiple cores share a
unified L3 cache). To test this, we also conduct block-size
experiments on a machine with a Core i7-3610QM CPU (4
cores/8 threads with 6 MB of L3 cache), and one with a
Xeon X5650 CPU (6 cores/12 threads with 12 MB of L3
cache). We find that the best-performing block size is in
the range of 8-16 MB for the Core i7 machine, and about
16 MB for the Xeon X5650 machine. This suggests a rule
of thumb for tuning block size: the optimal block size is ap-
proximately 5X to 10X times the L3 cache size divided by
the number of cores. Cache locality is very important for
performance, but the optimal block size actually somewhat
overuses the L3 cache, because prefetching can help avoid
cache misses (especially when scanning), and hyperthread-
ing can mitigate the performance impact of cache misses
when they occur.

4.1.2 Multi-Socket NUMA Scale-Up
We ran queries similar to those illustrated in Figures 1(a)-

1(c) with a larger 3 billion row dataset using all four sockets
in our multi-socket NUMA server. Increasing the number
of cores used on a single socket yielded good, near-linear
speedup (10 cores were 6.5X-9X as fast as one core, depend-
ing on the query). However, using 20 cores on 2 sockets
was never more than 20% faster than using 10 cores on a
single socket, and going to 3 or 4 sockets actually caused
response time to increase. This is because our experimen-
tal code-base is NUMA-oblivious, and neither the creation
of blocks nor the assignment of blocks to worker threads is
done with awareness of the different access costs for memory
attached to different sockets or the contention for bandwidth
on inter-socket links, causing worker threads to frequently
stall waiting for data from non-local memory. Our results
here confirm the need for NUMA-aware data placement and
processing observed in previous research [3, 34], which is an
active area of research in the community, and an important
area of future research with Quickstep.

4.2 Files vs. Blocks
We compared the traditional large-file organization with

Quickstep’s block-oriented organization across the other di-
mensions of our experiments. So as not to penalize the file-
based organization for a lack of parallelism, we statically
partition our test tables into 20 equally-sized files for 20
worker threads to operate on.

5

0 1 3 5 10
Of Attributes Projected

0

2

4

6

8

10

12

R
e
sp
o
n
se
 T
im
e
 (
s)

Files

Blocks

Blocks (Partitioned)

Organization File vs. Blocks

Tuple Storage Layout Column-Store

Indexing None

Predicate 10% Selectivity On
Sorted Column

Projection Width Varies

Figure 2: Files vs. Blocks – Sorted
Column

0 1 3 5 10
Of Attributes Projected

0

2

4

6

8

10

12

R
e
sp

o
n
se

 T
im

e
 (
s)

Files

Blocks

Organization File vs. Blocks

Tuple Storage Layout Row-Store

Indexing CSB+-Tree

Predicate 10% Selectivity On
Indexed Column

Projection Width Varies

Figure 3: Files vs. Blocks – Non-
Sorted Column

0.1% 1.0% 10.0% 50.0% 100.0%
Selectivity

10-2

10-1

100

101

102

R
e
sp
o
n
se
 T
im
e
 (
s)
 -
 L
o
g
 S
ca
le Column Store

Row Store

Row Store + CSB

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing None/CSB+-Tree

Predicate On Sorted/Indexed
Column

Projection Width 1 Column

Figure 4: Column-Store vs. Row-
Store (+Index) – Narrow Projection

In Figure 2, we show the difference in performance for
queries at 10% selectivity where the predicate is on the
sorted column of a column-store (for partitioned blocks, this
is also the column whose value the blocks are partitioned
on). The performance of files is similar to the performance
of blocks for narrow projections. When projecting 5 or 10
columns, blocks outperform files due to improved locality
of access and caching behavior when accessing several col-
umn stripes within a relatively small block to reassemble
tuples (in the example shown, file-based organization incurs
77.4 million total L3 cache misses and 1.53 billion L2 misses,
while block-based organization incurs only 73.6 million L3
misses and 1.14 billion L2 misses). This same pattern of
results occurs at the other selectivity factors that we tested.

Observation 3. For queries with a predicate on the sorted
column of a column-store, using a file or a block organiza-
tion makes little difference in performance, except for wide
projections, where blocks tend to perform better.

In Figure 3, we show the difference in performance for
queries at 10% selectivity where the predicate is on a non-
sorted column of a row-store, and a CSB+-Tree index is
used for predicate evaluation. Across all projection widths,
the block-oriented organization outperforms the file-based
organization. This is thanks to improved locality of ac-
cess in relatively small blocks, (in the example shown, when
projecting 5 attributes, file-based organization incurred 166
million L3 cache misses and 1.63 billion L2 misses, while
block-based organization incurred 177 million L3 misses but
only 673 million L2 misses). This result holds across all of
the selectivity factors that we test. For projections of one
or more attributes, reduction in response time for blocks vs.
files ranges from 2.1% (projecting 1 attribute at 1% selectiv-
ity) to 37.7% (projecting 10 attributes at 50% selectivity).
We see similar reductions in response times for blocks vs.
files when evaluating a predicate on an unsorted column of
a column-store with a CSB+-Tree index, and when evaluat-
ing predicates via a scan on a row-store or column-store.

Observation 4. For queries with a predicate on a non-
sorted column, a block-based organization outperforms a file-
based organization. This result holds for both row stores and
column stores, with and without indexing.

The block-based organization in Quickstep adds very little
storage overhead compared to files (there is less than 100

bytes of additional metadata per block). The total memory
footprint of the Narrow-U table without indices is 28610 MB
for files and 28624 MB for blocks (0.05% additional storage
for blocks). With a secondary CSB+-Tree index, the total
memory footprint is 35763 MB for files and 35776 MB for
blocks (0.04% additional storage for blocks).

4.2.1 Column-Store Load Cost
It should be noted that the cost of building large sorted

column-store files is higher than the cost of building many
individual sorted column-store blocks. In our experiments,
it takes 159.8 seconds to sort the 750 million tuple Narrow-U
table into 20 partitioned column-store files (using 20 worker
threads, 1 per partition). Building sorted 16 MB column-
store blocks, on the other hand, takes only 87.8 seconds (only
55% as much time, again using 20 worker threads). The sort
algorithm used in both cases is introsort [23]. As we saw
in Figure 2, the read-performance advantages of a sorted
column-store are maintained in the block-based layout, but
the initial load time is smaller.

Observation 5. The build time for a sorted column-store
in a block-based organization is smaller than that for a file-
based organization, but gives the same or better read query
performance.

4.3 Row-Store vs. Column-Store
Comparing row-store and column-store tuple storage lay-

outs in blocks, we find that, when selecting via a predicate
on the sorted column of the column-store, the column-store
outperforms the row-store for narrow projections, whether
or not a secondary CSB+-Tree index was built on the row-
store to speed predicate evaluation (we discuss indexing fur-
ther in Section 4.4). As one might expect, predicate evalu-
ation is fast for the column-store, merely requiring a binary
search on the sorted column. After this search, performing
the actual projection involves linear access to a contiguous
region of a few column stripes. The column-store’s per-
formance advantage for narrow projections is illustrated in
Figure 4. For wider projections (5 or 10 attributes), the per-
formance of the column-store is nearly equal to that of the
row-store with a secondary index, as seen in Figure 5. Al-
though predicate evaluation is more complicated when using
an index, and results in a random access pattern for tuples,
the row store makes up for this by storing all the column

6

0.1% 1.0% 10.0% 50.0% 100.0%
Selectivity

10-2

10-1

100

101

102

R
e
sp
o
n
se
 T
im
e
 (
s)
 -
 L
o
g
 S
ca
le Column Store

Row Store

Row Store + CSB

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing None vs. CSB+-
Tree

Predicate On Sorted/Indexed
Column

Projection Width 10 Columns

Figure 5: Column-Store vs. Row-
Store (+Index) – Wide Projection

0 1 3 5 10
Of Attributes Projected

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
sp
o
n
se
 T
im

e
 (
s)

Column Store + CSB

Row Store + CSB

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing CSB+-Tree

Predicate 1% Selectivity on
Indexed (Non-
Sorted) Column

Projection Width Varies

Figure 6: Column-Store vs. Row-
Store – Indices

0 1 3 5 10
Of Attributes Projected

0

10

20

30

40

50

R
e
sp
o
n
se
 T
im
e
 (
s)

Column Store

Row Store

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing None

Predicate 50% Selectivity
on Non-Sorted
Column

Projection Width Varies

Figure 7: Column-Store vs. Row-
Store – Scanning

values needed for a projection on one tuple in one or two con-
tiguous cache lines instead of several disjoint column stripes.
We saw similar results when comparing column-stores and
row-stores in the large-file organization (in fact, the perfor-
mance advantage for column-stores doing narrow projections
was more pronounced).

Observation 6. For queries with a predicate on a column-
store’s sorted column, a column-store outperforms a row-
store (even when using an index on the appropriate column
of the row-store) for narrow projections. For wider projec-
tions, performance of column-stores and row-stores (with an
applicable CSB+-Tree index) is nearly equal.

When testing queries that include a predicate on a column
other than the column-store’s sorted column, we find that,
when using blocks, row-stores outperform column-stores for
predicates that select a small number of tuples and benefit
from using an index, as seen in Figure 6. This is because,
when accessing column values to perform the projection, all
values lie on one or two adjacent cache lines in the row store,
whereas the each column value in a tuple is on a different
(non-contiguous) cache line in the column store. The per-
formance advantage for row-stores is larger for wider projec-
tions because column stores incur more cache misses for each
additional column in the projection, while row stores do not.
In the example shown, when projecting all 10 columns, 97.6
million L3 cache misses are incurred when using a column
store, but only 22.0 million when using a row store.
For predicates that select a large number of tuples and are

better evaluated with a scan, the performance of row stores
and column stores is equal, as seen in Figure 7. When scan-
ning, the access pattern is linear and prefetching is effective
at avoiding cache misses (both for the single tuple-storage
region in the row-store and the densely-packed values in col-
umn stripes in the column store).

Observation 7. For queries with a predicate on a non-
sorted column, with a block-based organization, row-stores
outperform column-stores when using indexing. This result
holds for various selectivity factors and is more pronounced
for wider projections. For scan-based queries, row stores and
column stores have similar performance.3

3Note that, at 50% selectivity (where it is more efficient to evalu-
ate predicates with a scan than index), column-stores outperform

When we test these same queries (with predicates on a
non-sorted column) using large-file organization, we find
that for queries with 0.1% and 1% selectivity, a row-store
with a CSB+-Tree index outperforms a column-store with a
CSB+-Tree index for projections of 3 or more attributes.
For narrower projections, and for all queries at 10% se-
lectivity, the column store and the row store (both with
CSB+-Tree index) have the same performance. Just as in
the block-based organization, predicate evaluation using an
index takes the same amount of time in either case, but row-
stores benefit from the fact that all column values for a pro-
jection lie on one or two adjacent cache lines when projecting
more than one attribute. For queries with 50% and 100%
selectivity (where indices were no longer useful) we find that
the column-store slightly outperforms the row-store for pro-
jections of 1, 3, or 5 attributes, and that the row-store out-
performs the column store for projections of 10 attributes.
This is because, when scanning, column stripes are accessed
in a prefetching-friendly linear pattern, and when selecting
50% or 100% of tuples, there tend to be several matching
attribute values on every single cache-line accessed (8 val-
ues/line on average at 50% selectivity). Row stores do better
when projecting all 10 attributes because a single contigu-
ous row can be directly copied rather than being reassembled
from several disjoint column stripes.

Observation 8. For queries with a predicate on a non-
sorted column, with a file-based organization, whether row-
stores or column-stores perform best is situational and de-
pendent on selectivity, projection width, and indexing.

As a point of comparison, we also test scans of column-
stores vs. row-stores in a leading commercial main-memory
analytical database, which we call DB-X. DB-X supports
both types of storage. The relative performance of column-
stores and row-stores in DB-X is very similar to what we
observe in files in Quickstep (i.e. column-stores slightly out-
perform row-stores when scanning).

We also test queries comparing row-store and column-
store performance at larger block sizes (64 MB and 256 MB)
to see if, at large block sizes, blocks start to behave more like
files. 64 MB blocks have results similar to Observation 7.

row-stores for wide columns (Section 4.8) and for narrow projec-
tions of wide rows (Section 4.9).

7

For 256 MB blocks, when using an index at lower selectivi-
ties, column-stores perform similar to row-stores for narrow
projections, while row-stores perform best with wider pro-
jections. When scanning at large selectivity factors, column-
stores perform best when projecting 1 attribute, while row-
stores perform best when projecting all 10 attributes (per-
formance is nearly equal when projecting 3 or 5 attributes).
The relative performance of row-stores and column-stores in
very large blocks (256 MB) is similar to that in files.
Row-stores and column-stores have essentially identical

memory footprints (there is exactly the same amount of
data, the only difference being whether it is organized in
row-major or column-major order). The Narrow-U table
(without indices) takes up 28610 MB in files and 28624 MB
in blocks for both column-store and row-store layouts.

4.4 Effect Of Indices
As noted in Section 4.3 and illustrated in Figures 4 and 5,

when evaluating a predicate that selects based on the value
of the sort column in a column-store, a column-store tends
to slightly outperform indexed access. In this section, we
explore the effect of indexing on row-stores, and when eval-
uating a predicate on a non-sorted column of a column-store.
In Figure 8, we show the effect of using a CSB+-Tree

index sub-block to evaluate a predicate where the underlying
tuple-storage sub-block is a row-store or column-store. At
0.1%, 1%, and 10% selectivity, using the index is faster than
scanning the tuple-storage sub-block. At 50% selectivity,
using the index is roughly equal in performance to a scan.
We do not show results for 100% selectivity, as queries that
match all the tuples automatically skip any indices. We see
similar results for other projection widths.
In Figure 9, we similarly show the effect of using a CSB+-

Tree index in the large-file layout. Using an index again
reduces query run time at 0.1%, 1%, and 10% selectivity,
whether the base table file is a row-store or column-store.
At 50% selectivity, an index is no longer useful, and for
column stores it is faster to simply scan the base table.
Using an index outperforms scanning at lower selectivity

factors, because predicate evaluation with an index requires
only a logarithmic-time traversal of the CSB+-Tree struc-
ture, after which only matching tuples are accessed to per-
form the projection. Scanning requires accessing every tuple
in the table individually to check the predicate (a linear-time
procedure). In the example shown in Figure 8, at 0.1% se-
lectivity, the total number of L3 cache misses is 1.38 million
when using an index with a row store vs. 83.1 million when
scanning the base row store). At very large selectivity fac-
tors, most tuples must be accessed anyway, so the advantage
of the index is muted. Additionally, scans access data in a
purely linear pattern, which allows prefetching to be very
effective at avoiding cache misses. In the same example, at
50% selectivity, using an index incurs 682 million L3 cache
misses, while scanning incurs only 148 million L3 misses (an
index still performs competetively despite this cache-miss
disadvantage because the predicate does not need to be in-
dividually checked for every tuple).

Observation 9. For queries with a predicate on a non-
sorted column, using a CSB+-Tree index improves query
performance for selectivity factors below 50%. This result
holds for blocks and files, for both column-store and row-
store tuple-storage layouts, and across all projection widths.

Our results here suggest that the conventional wisdom re-
garding query optimization in the presence of indices, namely
that indices should be used when selectivity is estimated to
be below 10%, is mistuned for the main memory environ-
ment. Our data indicate that the appropriate cutoff, which
balances the more efficient predicate evaluation and sparse
data access of the index approach against the prefetching-
friendly linear access pattern of the scan approach, is some-
where above 10% selectivity and below 50% selectivity.

Our results also demonstrate that secondary indices can
play a major role in accelerating query performance in a
main memory analytic database. The scan-only approach of
systems like Blink [5] greatly simplifies query optimization,
but excluding indices from the system can unnecessarily pe-
nalize the performance of queries with lower selectivity fac-
tors. We also note that Quickstep’s block-oriented storage
allows the global query optimizer to remain index-oblivious,
with the decision of whether to use an index being made in-
dependently on a per-block basis within the storage system.

Adding a secondary index necessitates using some addi-
tional storage. The additional memory footprint of a CSB+-
Tree index on a single column of the Narrow-U table is 7152
MB for blocks and 7152.56 MB for files (25% of the storage
used for the base table in either case).

4.4.1 Ordering and Cache Behavior
As noted above, at large selectivity factors, using an index

can actually increase the number of cache misses compared
to simply scanning the base table. This is because the order
of matches in the index is, in general, different from the order
of tuples in the base row-store or column-store, resulting in
a random access pattern when accessing tuples to perform
the projection. It is natural to ask whether it is possible to
improve index performance by first using an index generate
a list of tuple-IDs matching a predicate, then sorting this
list into ascending order before accessing values in the base
table to perform the projection. Tuples in the base table are
then accessed in their physical order, effectively changing a
random access pattern into a linear one, helping to avoid
cache misses and take advantage of prefetching.

We conducted experiments to determine the effectiveness
of sorting the matches (i.e. whether improvements in cache
behavior are worth the additional time required to sort the
matches). We find that the sorting optimization performs
best in combination with a column-store in a file-based or-
ganization. For example, when projecting 10 columns at a
selectivity factor of 10%, sorting matches reduces the total
number of L3 cache misses from 824 million to 430 million.
Despite this improvement, the overall query response time
remains nearly the same (nearly all of the benefit of ordered
access is negated by the cost of sorting). When the table is
in a row-store format, or when using block-based organiza-
tion instead of files, sorting was not as effective at avoiding
cache misses, and as a result the overall response time actu-
ally increased due to the additional cost of sorting.4

4.4.2 Index Build Cost
We measure the time to bulk-load CSB+-Tree indices for

both the file and the block organizations, with both row-
store and column-store tuple-storage layouts. We used 20

4For this experiment on a Xeon X5650 server, we found significant
performance improvement from sorting for column-stores in files
at 10% selectivity and above. Otherwise, the results were similar.

8

0.1% 1.0% 10.0% 50.0%
Selectivity

0

5

10

15

20

25

R
e
sp
o
n
se
 T
im

e
 (
s)

Column Store

Column Store + CSB

Row Store

Row Store + CSB

Organization Blocks

Tuple Storage Layout Column-Store &
Row-Store

Indexing None vs. CSB+-
Tree

Predicate Varying Selectivity
on Indexed (Non-
Sorted) Column

Projection Width 3 Columns

Figure 8: Effect Of Indices (Blocks)

0.1% 1.0% 10.0% 50.0%
Selectivity

0

5

10

15

20

25

30

35

R
e
sp
o
n
se
 T
im

e
 (
s)

Column Store

Column Store + CSB

Row Store

Row Store + CSB

Organization File

Tuple Storage Layout Column-Store &
Row-Store

Indexing None vs. CSB+-
Tree

Predicate Varying Selectivity
on Indexed (Non-
Sorted) Column

Projection Width 3 Columns

Figure 9: Effect Of Indices (Files)

0.1% 1.0% 10.0% 50.0% 100.0%
Selectivity

10-2

10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
s)
 -
 L
o
g
 S
ca

le Uncompressed

Compressed

Organization Blocks

Tuple Storage Layout Column-Store

Indexing None

Predicate Varying Selectivity
on Non-Sorted Col-
umn

Projection Width 3 Columns

Figure 10: Effect Of Compression
(Column Store Scan)

worker threads in all cases, with each thread working on one
of the static partitions in the file organization, and working
on individual blocks in the block organization. For files, the
index build time is 111.6 seconds with a row-store and 87.3
seconds with a column-store. For blocks, the index build
time is 61.6 seconds with row-stores and 33.6 seconds with
column-stores. Index build time is only 38-55% as long for
blocks as for files, and 55-78% as long when the base table is
a column-store as a row-store. Note that, when using indices
on a non-sorted column, performance is better with blocks
than with files (see Figure 3). Build times are smaller with
blocks because the tuple values in relatively small blocks
constitute much smaller “runs” to sort into order and build
a shallower tree from. Build-times are smaller for column-
stores because all of the values that are accessed to build
the index are in contiguous regions of memory, efficiently
packed with 16 values per cache line.

Observation 10. The build time for CSB+-Tree indices is
much smaller for blocks than for files, even though block-
based indices give better read query performance.

4.5 Effect of Compression
We enable bit-packing and dictionary-coding compression

techniques described in Section 3.3.4 in combination with
row-stores, column-stores, and CSB+-Tree indices and test
our compression techniques on the Narrow-E table. In gen-
eral, columns 1 and 2 can be represented by single-byte
codes, and columns 3, 4, and 5 can be represented by 2-
byte codes. Compression reduces the size of the Narrow-E
table in blocks from 28624 MB to 20032 MB (compression
ratio is highly sensitive to data distribution, and is likely to
be quite different for different tables). We test predicates
on a compressed column (column 5), and randomly vary the
projected attributes as in other experiments.
Generally, compression improves performance at selectiv-

ity 10% and below, and worsens performance at selectivity
50% and above. This is true for column-stores (with pred-
icates on sorted or unsorted columns) and row-stores, with
and without indexing, for all projection widths. Compres-
sion speeds up predicate evaluation, as predicates can be
evaluated directly on compressed codes and all storage for-
mats are more densely packed in memory, leading to more
efficient usage of caches and memory bandwidth. However,

compression also increases the cost of performing projec-
tions, as codes must be decompressed before they are writ-
ten to (uncompressed) output blocks. When selectivity fac-
tors are low, the cost of predicate evaluation is dominant
and compression improves performance. When selectivity
factors are high, the cost of decompression begins to over-
whelm the advantage from faster predicate evaluation.

We illustrate the effect of compression when scanning a
non-sorted compressed column of a column-store in Fig-
ure 10. Here, the performance improvement for compression
is most dramatic. Scans can go through small, very dense
compressed column stripes, avoiding most cache misses thanks
to prefetching. In the example shown, for a predicate with
0.1% selectivity, enabling compression on the column store
reduced the total number of L3 cache misses from 5.98 mil-
lion to 3.32 million. We also illustrate the effect of com-
pression when using a CSB+-Tree index with a row-store in
Figure 11. These results are more typical of the benefit seen
from compression (we see similar patterns for scans of row-
stores, and when evaluating predicates on a column-store’s
sort column, or on a column-store with an index), which
modestly improves performance at 10% selectivity and be-
low, and slightly worsens performance at 50% and above.

Observation 11. Dictionary-coding and bit-packing com-
pression improve performance when selecting via a predicate
on a compressed column at selectivity 10% or below. Com-
pression makes performance slightly worse at selectivity 50%
and above. These results hold for column-stores and row-
stores, with and without indexing. Performance improve-
ments are most pronounced when scanning column stores.

4.6 Complex Predicates
We now examine how conjunctive predicates affect the

performance of different storage organizations. The predi-
cates in these queries are conjunctions of three single-column
predicates, and the projected columns are randomly chosen
for each run as in other experiments.

There are a number of strategies possible for evaluat-
ing complex predicates, depending on the storage organi-
zation. We evaluate four simple predicate evaluation strate-
gies across the space of storage organizations which we study
(note that not all of these strategies are possible in every or-
ganization). A pure scan, where values for each predicate

9

0.1% 1.0% 10.0% 50.0% 100.0%
Selectivity

10-2

10-1

100

101

102

R
e
sp

o
n
se

 T
im

e
 (
s)
 -
 L
o
g
 S
ca

le Uncompressed

Compressed

Organization Blocks

Tuple Storage Layout Row-Store

Indexing CSB+-Tree

Predicate Varying Selectivity
on Indexed Col-
umn

Projection Width 3 Columns

Figure 11: Effect Of Compression
(Row Store With Index)

0 1 3 5 10
Of Attributes Projected

0

1

2

3

4

5

6

R
e
sp
o
n
se
 T
im
e
 (
s)

Pure Scan

CSBTree

Sort Column

Sort Column + CSBTree

Organization Blocks

Tuple Storage Layout Column-Store

Indexing None vs. CSB+-
Tree

Predicate 1% Selectivity (3
Columns)

Projection Width Varies

Figure 12: Conjunction – Evalua-
tion With Column-Store & Index

0 1 3 5 10
Of Attributes Projected

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
sp

o
n
se

 T
im

e
 (
s)

Column Store + CSB

Row Store + CSB

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing CSB+-Tree

Predicate 1% Selectivity (3
Columns)

Projection Width Varies

Figure 13: Conjunction – Column
Store vs. Row Store – Indices

column are explicitly read and checked, remains the sim-
plest strategy for both column-stores and row-stores. For a
column-store where one of the predicates is on the sort col-
umn, a binary search can quickly evaluate that predicate,
and the matching tuples can then be scanned and filtered
by the remaining predicates on other columns (i.e. a scan,
but with a simpler predicate over a smaller range of tuples).
When an index is present on one of the columns in the con-
junction, the index can be used to evaluate that predicate,
and values from matching tuples can be fetched to explicitly
check the remaining predicates (again, evaluating a simpler
predicate over a smaller number of tuples, but in this case in
random order). Synergies between these specialized meth-
ods are possible. As a fourth strategy, we evaluate the case
where one predicate is on the sort column of a column-store
and another is on an indexed column. We determine the
range of tuples that match the first predicate (using a bi-
nary search), then use the index to evaluate the second pred-
icate and automatically skip over any tuples which aren’t in
the range for the first. Finally, we fetch column values for
any tuples which we know match the first two predicates to
evaluate the third predicate.
We illustrate the performance of these strategies in Fig-

ure 12. Here we see that a pure scan performs worst, and
using either a CSB+-Tree index or a search on the column-
store’s sort column is effective at reducing query response
time. When projecting three columns, the pure scan incurs
38.7 million L3 cache misses. Using a CSB+-Tree index ac-
tually increases the number of L3 cache misses to 163 million
(the random access pattern is less amenable to prefetching),
but it makes up for this by reducing the number of tuples
that predicates must be explicitly checked for by 78% (at
1% selectivity), and also reducing the number of predicates
that must be explicitly checked from 3 to 2. Doing a binary
search on the sort column has all the advantages of using an
index, but also has the additional advantage of reducing the
number of L3 cache misses to 16.3 million.
The virtuous effects of the index and the sorted-column

search compound each other when they are used in combi-
nation to evaluate different parts of a conjunctive predicate,
significantly outperforming either used alone. The combi-
nation of both techniques reduces the number of tuples that
must have predicates explicitly checked to just 4.6% of the
tuples in the table (at 1% selectivity), and only one pred-

icate needs to be explicitly checked. The number of L3
cache misses incurred when using the combined technique
is 39.8 million (about the same as a scan, and worse than
just the binary search, but overall performance is better be-
cause there is only one remaining predicate, and it needs to
be checked for far fewer tuples). We see similar results for
conjunctions at other high selectivity factors.

Observation 12. For conjunctive predicates with overall
high (<10%) selectivity, using a sorted-column search and
a CSB+-Tree index in combination outperforms either tech-
nique used on its own.

For most conjunctive queries, we found that our obser-
vations regarding the relative performance of different stor-
age organizations hold. One exception to this was Observa-
tion 7. When evaluating a conjunctive predicate with a low
selectivity factor (0.1% or 1%) using an index on a single
column in the predicate, column stores slightly outperform
row-stores for narrow projections. This is illustrated in Fig-
ure 13. This is because, after matches are obtained from the
index, the rest of the predicate must be checked by fetching
values from two other columns in the base table, and these
additional values are more densely packed in cache lines in
a column-store (in the example shown, when projecting 1
column, the number of L3 cache misses is 202 million for
the row-store, but only 148 million for the column-store).

4.7 Aggregation
As a final experiment, we run an aggregate query with

a GROUP BY clause (with 100 partitions) against the differ-
ent storage organizations which we studied. We use a mul-
tithreaded hash-based implementation of GROUP BY, where
each worker thread maintains its own hash-table keyed on
the value of the grouping attribute, with a payload which is
the aggregate’s “handle” (in this case the running value for
MIN()). The final step in query execution is to merge the
per-thread hash tables together into a single global result
and apply the HAVING condition as a filter. We show the
response time for aggregate queries in Figure 14.

In general, the performance of aggregation very closely
tracks the performance of a scan with a two-column predi-
cate and no projected output. For every tuple, two columns
values are read: the group-by column, which is used to probe

10

0.0

0.5

1.0

1.5

2.0

2.5

R
e
sp

o
n
se

 T
im

e
 (
s)

Column Store (Blocks)

Column Store (Files)

Row Store (Blocks)

Row Store (Files)

Organization Blocks vs. Files

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing None

Predicate None

Projection Width N/A

Figure 14: Aggregate – MIN with
100 partitions

0 1 3 5 10
Of Attributes Projected

0

2

4

6

8

10

12

R
e
sp

o
n
se

 T
im

e
 (
s)

Column Store

Row Store

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing None

Predicate 50% Selectivity

Projection Width Varies

Figure 15: Wide Columns (Strings
Table) – Scanning

0 1 15 25 50
Of Attributes Projected

0

5

10

15

20

25

30

35

40

45

R
e
sp
o
n
se
 T
im
e
 (
s)

Column Store

Row Store

Organization Blocks

Tuple Storage Layout Column-Store
vs. Row-Store

Indexing None

Predicate 50% Selectivity

Projection Width Varies

Figure 16: Wide Rows (Wide-E
Table) – Scanning

the hash table, and the aggregated column, which is com-
pared with the running minimum for a given partition and
possibly replaces it. The hash tables for this 100-partition
query are quite small and easily fit in the L1 data cache, so
the dominant cost is the cost of reading all the values from
two columns of the base table. Prefetching is quite effective
for this linear-scan access pattern, and the dense packing of
values in the column store causes it to incur fewer cache-
misses and outperform the row store in this case (the block-
based row-store incurred 172 million L3 cache misses, but
the block-based column-store incurred only 10.8 million).
Efficiently computing aggregates in-memory is an active

area of research, particularly when data cubes and advanced
holistic aggregates are involved [24,28]. A full study of main-
memory aggregation is beyond the storage-engine focus of
this paper, but our results do indicate that for simple ag-
gregate operations, aggregate performance is closely related
to scan performance.

4.8 Effect of Wide Columns
In order to study the effect of wide columns, we repeat our

experiments from previous sections using the Strings table,
which has ten 20-byte wide columns and 1/5 the number of
tuples as the Narrow-U table. Most of the queries tested
experience a reduction in runtime on the order of 3X to
5X compared with the equivalent queries on the Narrow-
U table, which shows that table cardinality is a dominant
linear factor in response time.
With the overall reduction in query response time, re-

sults for the Strings table are remarkably consistent with
those for Narrow-U. The previously identified observations
hold, with the following caveat: in the block-based organi-
zation, column-stores are more competitive with row-stores
for queries with a predicate on a non-sorted column. At
0.1%, 1%, and 10% selectivities, when using an index, row-
stores still outperform column-stores when projecting more
than one attribute, but the difference is less pronounced.
At 50% selectivity, when using a scan, column-stores out-
perform row-stores for narrow projections. This result is
illustrated in Figure 15. This behavior is because tuples in
the strings table are 200 bytes wide and span over 4 or 5
cache lines in a row store, which mutes the advantage row
stores have when projecting small values for several columns
which were often on the same cache line in Narrow-U.

4.9 Effect of Wide Rows
In order to study the effect of wide rows, we repeat our

experiments from previous sections using the Wide-E table,
which has 50 integer columns and 1/5 the number of tuples
as the Narrow-U table. Most of the queries we test have a
runtime similar to the equivalent queries on Narrow-U when
producing the same volume of output (i.e. 1/5 as many tu-
ples but 5 times as many columns). Results for the Wide-E
table were also very consistent with those for Narrow-U.
All previously identified observations hold for wide rows,
except that in the block-based organization, at selectivity
factor 50% (at which point indices are not useful, and we
evaluate predicates via a scan), a column-store is faster for
narrow projections, while a row-store is faster for wide pro-
jections. This is illustrated in Figure 16. Again, we can
partially chalk this up to the fact that wide 200-byte rows
are spread across 4 or 5 cache lines in a row store, and it is
necessary to project a substantial portion of the columns to
see a benefit from locality of access due to several projected
attributes from a matching row lying on the same cache line.
Additionally, a column store will typically store values from
several matching tuples together on the same cache line for
a query with high (∼50%) selectivity, so that a cache line
which is fetched to perform a projection for one tuple will
typically remain resident and also be used when projecting
the same attribute for the next few tuples. For example, in
the figure shown, when projecting one column, the row-store
incurs 241 million L3 caches misses, but the column-store
incurs only 3.72 million. Note that for smaller selectivity
factors, when using an index, a row-store still outperforms
a column-store across the board in the block organization.

4.10 Summary
Our experimental observations can be distilled to the fol-

lowing insights for physical organization of data in a read-
optimized main memory database:
1. Block-based organization should always be used
over file-based organization. Performance for blocks is
always at least as good as files, and often better. Addi-
tionally, blocks have cheaper load costs, both for sorting
column-stores and building CSB+-Tree indices.
2. Both column-store and row-store organization
should be available as options for tuple-storage lay-
out. Column-stores perform best when there is a single

11

dominant (i.e. sorted) column which predicates select on, or
when the selectivity factor is large (∼50%) and the columns
are wide, or rows are wide and projections are narrow. Row-
stores perform best when selecting via predicates on various
different columns, with or without an index, except for edge
cases at large (∼50%) selectivity factors noted previously.
3. CSB+-Tree indices, co-located with data inside
blocks, are useful in speeding query evaluation with
predicates on a non-sorted column. This is true whether
the tuple-storage format is a row-store or column-store, for
selectivity factors smaller than ∼50%. At larger selectivity
factors, it is better to simply scan the base table.
4. Compression can improve query performance
across the other dimensions of storage organization
studied. When a column’s data is amenable to compres-
sion, we find that compression consistently improves per-
formance for queries at 10% selectivity or below, especially
when scanning an unsorted column of a column store.

5. RELATED WORK
The design of high-performance main memory databases

to support analytical workloads has been a vibrant area of
research for over a decade. An early pioneer in this area (and
also in the field of column-stores) was MonetDB [7], and sub-
sequently Vectorwise [35]. Quickstep applies lessons from
MonetDB and Vectorwise, particularly in that it material-
izes results of intermediate selection operations in-memory
all at once on the scale of storage blocks, using tight execu-
tion loops that make good use of L1 instruction caches and
tend to keep CPU pipelines full (see Section 2 for details).
There are a number of commercial products that target

the main memory data analytics market, including SAP
HANA [11], IBM Blink [25], and Oracle Exalytics [22], as
well as academic projects like HyPer [17] and HYRISE [13].
Both row-store and column-store data organizations have
found use in main memory analytical databases. Blink [5,25]
is a row-store based main memory analytical database, while
SAP HANA [11] is a primarily column-store based system.
The space of possible data organizations is not limited to

row-stores and column-stores, and includes other alterna-
tives such as PAX [2] and data morphing [14]. The HYRISE
project [13] has adapted data morphing techniques to the
main memory environment. To control the scope of this
project, we limited ourselves to studying the widely-used
row-store and column-store layouts in this paper, but we do
intend to expand our scope to other alternatives in the fu-
ture. Note that the highly modular and flexible Quickstep
storage system (see Section 2.1) makes it easy to integrate
new storage formats into Quickstep.

6. CONCLUSION AND FUTURE WORK
In this paper, we have identified and evaluated key parts

of the design space of storage organizations for main mem-
ory read-optimized databases that can have a major im-
pact on the performance of analytic queries. Our empirical
evaluation has found that block-based organization performs
better than file-based organization, that column-stores and
row-stores each have advantages for certain classes of queries
(and both options should be considered for high-performance),
that CSB+-Tree indices, co-located with data inside blocks,
can play a major role in accelerating query performance, and
that where data is amenable to compression and selectivity

factors are sufficiently small, compression can also improve
query performance.

The design space for storage organizations is quite large,
and while we have explored the key dimensions of the design
space in this paper, we fully expect that there are open
portions in the design space that may be worth exploring.
The Quickstep storage manager that we have produced as
part of this work could be used to explore portions of the
design space that are not covered in this study.

7. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores:

how different are they really? SIGMOD, pages 967–980, 2008.

[2] A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page layouts for
relational databases on deep memory hierarchies. VLDB, pages 198–215,
2002.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel
sort-merge joins in main memory multi-core database systems. VLDB,
pages 1064–1075, 2012.

[4] C. Balkesen, J. Teubner, G. Alonso, and M. T. Oszu. Main-memory hash
joins on multi-core cpus: Tuning to the underlying hardware. ICDE, 2013.

[5] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos,
M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M. Lohman, K. Morfonios,
R. Müller, K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze,
and S. Szabo. Business analytics in (a) blink. ICDE, pages 9–14, 2012.

[6] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory
hash join algorithms for multi-core cpus. SIGMOD, pages 37–48, 2011.

[7] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall
in monetdb. Commun. ACM, 51(12):77–85, Dec. 2008.

[8] D. Campbell. Breakthrough performance with in-memory technologies.
https://blogs.technet.com/b/dataplatforminsider/archive/2012/11/08/breakthrough-

performance-with-in-memory-technologies.aspx, Nov. 2012.

[9] S. Chen, A. Ailamaki, P. Gibbons, and T. Mowry. Improving hash join
performance through prefetching. In ICDE, pages 116 – 127, March 2004.

[10] D. J. DeWitt. The wisconsin benchmark: Past, present, and future. The
Benchmark Handbook for Database and Transaction Systems. Morgan Kaufmann,
1993.

[11] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner.
Sap hana database: data management for modern business applications.
SIGMOD, pages 45–51, 2011.

[12] G. Graefe. Sorting and indexing with partitioned b-trees. CIDR, 2003.

[13] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. Hyrise: a main memory hybrid storage engine. VLDB, pages
105–116, 2010.

[14] R. A. Hankins and J. M. Patel. Data morphing: an adaptive,
cache-conscious storage technique. VLDB, pages 417–428, 2003.

[15] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance
tradeoffs in read-optimized databases. VLDB, pages 487–498, 2006.

[16] A. L. Holloway and D. J. DeWitt. Read-optimized databases, in depth.
VLDB, pages 502–513, 2008.

[17] A. Kemper and T. Neumann. Hyper: A hybrid oltp & olap main memory
database system based on virtual memory snapshots. ICDE, pages 195–206,
2011.

[18] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. hash revisited: fast join
implementation on modern multi-core cpus. VLDB, pages 1378–1389, 2009.

[19] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and
C. Bear. The vertica analytic database: C-store 7 years later. VLDB, pages
1790–1801, 2012.

[20] S. Manegold, M. L. Kersten, and P. Boncz. Database architecture
evolution: mammals flourished long before dinosaurs became extinct.
VLDB, pages 1648–1653, 2009.

[21] M. Mehta and D. J. DeWitt. Data placement in shared-nothing parallel
database systems. VLDB, pages 53–72, 1997.

[22] B. Murthy, M. Goel, A. Lee, D. Granholm, and S. Cheung. Oracle
exalytics in-memory machine: A brief introduction.
http://www.oracle.com/us/solutions/ent-performance-bi/business-

intelligence/exalytics-bi-machine/overview/exalytics-introduction-1372418.pdf,
October 2011.

[23] D. R. Musser. Introspective sorting and selection algorithms. Software
Practice and Experience, 27(8):983–993, 1997.

[24] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed cube
materialization on holistic measures. In ICDE, pages 183–194, 2011.

[25] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann,
I. Narang, and R. Sidle. Constant-time query processing. ICDE, pages
60–69, 2008.

[26] J. Rao and K. A. Ross. Making b+- trees cache conscious in main memory.
SIGMOD, pages 475–486, 2000.

[27] J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical
database design in a parallel database. SIGMOD, pages 558–569, 2002.

[28] K. A. Ross and K. A. Zaman. Serving datacube tuples from main memory.
In Scientific and Statistical Database Management, pages 182–195. IEEE, 2000.

[29] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system.
SIGMOD, pages 23–34, 1979.

[30] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary, V. Bharathan, and
C. Bear. Materialization strategies in the vertica analytic database:
Lessons learned. ICDE, 2013.

[31] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd.
Efficient transaction processing in sap hana database: the end of a column
store myth. SIGMOD, pages 731–742, 2012.

[32] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik. C-store: a column-oriented dbms. VLDB, pages
553–564, 2005.

[33] VoltDB Inc. VoltDB Technical Overview.
http://voltdb.com/resources/whitepapers, June 2011.

12

[34] K. M. Wilson and B. B. Aglietti. Dynamic page placement to improve
locality in cc-numa multiprocessors for tpc-c. In ACM/IEEE Conference on
Supercomputing, pages 33–33, 2001.

[35] M. Zukowski, M. van de Wiel, and P. Boncz. Vectorwise: A vectorized
analytical dbms. ICDE, pages 1349–1350, 2012.

APPENDIX

A. JOIN PROCESSING
Processing of join queries in a main-memory engine is a

very active area of research. Well-known join algorithms
such as sort-merge join [3, 18] and hash-join [4, 6, 9] are be-
ing adapted and tuned to highly parallel multi-core CPUs
in the main memory environment. Joins are a higher-level
query processing operation that, in general, are beyond the
single-relation access plan-centric focus of this paper. Nev-
ertheless, it is known that widely-used join algorithms do
interact with the storage manager in a predictable way, and
storage manager performance affects join performance. For
instance, the previous study which we base our experiments
on showed that hash-join performance is closely related to
the scan performance of base tables [16], since both building
a hash table and scanning the outer table to probe it involve
a linear scan of the base tables in the join.
We evaluated a hash join in Quickstep, with both row-

store and column-store data layout in both blocks and files.
We use an outer table consisting of 750 million tuples based
on the Narrow-U schema, but replace one column with a
unique key. The inner table has a similar schema with 75
million tuples (1/10 as many, the same ratio of table sizes
used in the join queries Q10-Q17 of the Wisconsin bench-
mark [10]). Queries are of the form:
SELECT outer.col a, ..., inner.col a, ... FROM

outer, inner WHERE outer.join key = inner.join key;

We vary the number of “payload columns” projected from
each table and materialized in the output. As with our other
experiments, we use 20 worker threads operating in parallel
(for both the build and probe phases of the hash-join).
In all cases, we build a single global hash-table on the join

key of the inner table (using a single global hash-table has
been shown to outperform using smaller partitioned hash-
tables when joining [6]). We use a concurrent hash-table im-
plementation which allows us to build the global hash table
in parallel, with multiple threads scanning different blocks
or file partitions of the inner table and inserting entries in
the hash table.
We show results for the actual join query in Figure 17.

The query executes in two stages. In the first, worker threads
scan the inner table in parallel and insert entries into the
global hash table. In the second, worker threads scan the
outer table in parallel and probe the hash table for a match
on the join key. When a match is found, the projected
columns are fetched from the inner and outer tables and
materialized as a new row in the output (we do not claim
that the projection method here is optimal, and acknowl-
edge that aspects such as early vs. late materialization is
an active an ongoing area of research [30], and beyond the
scope of this paper). During the build stage, access on the
inner table follows a linear scan pattern, while insertions
into the hash table follow a random-access pattern. During
the join stage, access on the outer table follows a linear scan
pattern, and access on the hash table and the inner table
follows a random-access pattern. The memory-access pat-
tern of a hash-join therefore has some characteristics of a

2 6 10
Of Attributes Projected

0

20

40

60

80

100

120

140

R
e
sp
o
n
se
 T
im
e
 (
s)

Column-Store Files
Row-Store Files
Column-Store Blocks
Row-Store Blocks

Organization Blocks vs. Files

Tuple Storage Layout Column-Store vs. Row Store

Indexing None

Predicate JOIN

Projection Width Varies

Figure 17: Hash Join Performance

scan (scanning the inner table when building the hash ta-
ble and the outer table when joining) and some which are
similar to index-access (random-access probing of the hash
table and fetching inner-table tuple values for projection).
For all queries, the hash-build stage took about 7.5 seconds
with files and 8.5 seconds with blocks5, with the remaining
bulk of the execution time (and most of the difference in
performance) spent in the probe-and-project stage.

Block-based organization consistently outperforms file-based
organization, due to improved locality of access in smaller
blocks resulting in better cache behavior (consistent with
our results for selection queries). For instance, when pro-
jecting 10 columns (5 from each table), row-stores in files
incur 5.38 billion L3 cache misses and 14.4 billion L2 cache
misses, but row stores in blocks incur only 4.58 billion L3
misses and 5.83 billion L2 misses. We also see a slight per-
formance advantage for row-stores over column-stores when
projecting several columns, since the random access to col-
umn values in the inner-table hits all the desired values on
one or two contiguous cache lines in a row store, whereas
they are in several disjoint cache lines in different column
stripes in a column store. For example, when projecting
10 attributes in file-based organization, column-stores incur
6.41 billion L3 cache misses, but row-stores incur only 5.38
billion.

Observation 13. For hash-join queries, block-based organi-
zation consistently outperforms file-based organization. For
wider projections, row-stores slightly outperform column stores.

5The slightly reduced performance for blocks in the build phase
suggests that the block-based organization might actually be too

parallelization-friendly relative to files during the build phase,
since building the global hash table requires threads to sometimes
synchronize when accessing shared hash-table buckets. Tuning
the number of threads used in the hash-build phase below the
number used in the probe-and-project phase is an interesting pos-
sible optimization, but general hash-join algorithm tuning is a
broad area of research beyond the scope of this paper.

13

It should be noted that, in many analytics applications,
there is a “star schema” where a large central fact table is
connected to several smaller dimension tables by primary
key-foreign key relationships. Queries on joins of the fact
table with one or more dimension tables are extremely com-
mon. A widely-used optimization is to denormalize the star
schema by pre-joining the fact table with the dimension ta-
bles and storing the result as a materialized view which
single-table selection-projection and aggregate-grouping queries
are run on. Some systems (for instance Vectorwise [20]) au-
tomatically apply this optimization by introducing a “join

index” data structure, which is effectively a materialized
view which the DBMS automatically creates based on the
primary-foreign key relationships in the database schema.

Overall, results with Quickstep show that performance of
in-memory hash-joins is very closely related to scan perfor-
mance of the underlying tables, as well as the random-access
performance of the inner table. Applying the common tech-
nique of pre-joining tables also effectively turns many join
queries into scan queries.

14

